Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
2.
Radiol Cardiothorac Imaging ; 6(2): e230098, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38512024

RESUMO

Purpose To develop an approach for in vivo detection of interstitial cardiac fibrosis using PET with a peptide tracer targeting proteolyzed collagen IV (T-peptide). Materials and Methods T-peptide was conjugated to the copper chelator MeCOSar (chemical name, 5-(8-methyl-3,6,10,13,16,19-hexaaza-bicyclo[6.6.6]icosan-1-ylamino)-5-oxopentanoic acid) and radiolabeled with copper 64 (64Cu). PET/CT scans were acquired following intravenous delivery of 64Cu-T-peptide-MeCOSar (0.25 mg/kg; 18 MBq ± 2.7 [SD]) to male transgenic mice overexpressing ß2-adrenergic receptors with intermediate (7 months of age; n = 4 per group) to severe (10 months of age; n = 11 per group) cardiac fibrosis and their wild-type controls. PET scans were also performed following coadministration of the radiolabeled probe with nonlabeled T-peptide in excess to confirm binding specificity. PET data were analyzed by t tests for static scans and analysis of variance tests (one- or two-way) for dynamic scans. Results PET/CT scans revealed significantly elevated (2.24-4.26-fold; P < .05) 64Cu-T-peptide-MeCOSar binding in the fibrotic hearts of aged transgenic ß2-adrenergic receptor mice across the entire 45-minute acquisition period compared with healthy controls. The cardiac tracer accumulation and presence of diffuse cardiac fibrosis in older animals were confirmed by gamma counting (P < .05) and histologic evaluation, respectively. Coadministration of a nonradiolabeled probe in excess abolished the elevated radiotracer binding in the aged transgenic hearts. Importantly, PET tracer accumulation was also detected in younger (7 months of age) transgenic mice with intermediate cardiac fibrosis, although this was only apparent from 20 minutes following injection (1.6-2.2-fold binding increase; P < .05). Conclusion The T-peptide PET tracer targeting proteolyzed collagen IV provided a sensitive and specific approach of detecting diffuse cardiac fibrosis at varying degrees of severity in a transgenic mouse model. Keywords: Diffuse Cardiac Fibrosis, Molecular Peptide Probe, Molecular Imaging, PET/CT © RSNA, 2024.


Assuntos
Cobre , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Masculino , Animais , Camundongos , Sondas Moleculares , Tomografia por Emissão de Pósitrons , Imagem Molecular , Camundongos Transgênicos , Colágeno Tipo IV , Fibrose , Peptídeos
3.
J Pept Sci ; 30(2): e3542, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37697741

RESUMO

Insulin replacement therapy is essential for the management of diabetes. However, despite the relative success of this therapeutic strategy, there is still a need to improve glycaemic control and the overall quality of life of patients. This need has driven research into orally available, glucose-responsive and rapid-acting insulins. A key consideration during analogue development is formulation stability, which can be improved via the replacement of insulin's A6-A11 disulfide bond with stable mimetics. Unfortunately, analogues such as these require extensive chemical synthesis to incorporate the nonnative cross-links, which is not a scalable synthetic approach. To address this issue, we demonstrate proof of principle for the semisynthesis of insulin analogues bearing nonnative A6-A11 cystine isosteres. The key feature of our synthetic strategy involves the use of several biosynthetically derived peptide precursors which can be produced at scale cost-effectively and a small, chemically synthesised A6-A11 macrocyclic lactam fragment. Although the assembled A6-A11 lactam insulin possesses poor biological activity in vitro, our synthetic strategy can be applied to other disulfide mimetics that have been shown to improve thermal stability without significantly affecting activity and structure. Moreover, we envisage that this new semisynthetic approach will underpin a new generation of hyperstable proteomimetics.


Assuntos
Insulina , Lactamas , Humanos , Insulina/química , Qualidade de Vida , Cistina , Dissulfetos/química
4.
J Exp Clin Cancer Res ; 42(1): 341, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102692

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR) T-cells are a promising approach in cancer immunotherapy, particularly for treating hematologic malignancies. Yet, their effectiveness is limited when tackling solid tumors, where immune cell infiltration and immunosuppressive tumor microenvironments (TME) are major hurdles. Fibroblast activation protein (FAP) is highly expressed on cancer-associated fibroblasts (CAFs) and various tumor cells, playing an important role in tumor growth and immunosuppression. Aiming to modulate the TME with increased clinical safety and effectiveness, we developed novel small and size-extended immunotheranostic UniCAR target modules (TMs) targeting FAP. METHODS: The specific binding and functionality of the αFAP-scFv TM and the size-extended αFAP-IgG4 TM were assessed using 2D and 3D in vitro models as well as in vivo. Their specific tumor accumulation and diagnostic potential were evaluated using PET studies after functionalization with a chelator and suitable radionuclide. RESULTS: The αFAP-scFv and -IgG4 TMs effectively and specifically redirected UniCAR T-cells using 2D, 3D, and in vivo models. Moreover, a remarkably high and specific accumulation of radiolabeled FAP-targeting TMs at the tumor site of xenograft mouse models was observed. CONCLUSIONS: These findings demonstrate that the novel αFAP TMs are promising immunotheranostic tools to foster cancer imaging and treatment, paving the way for a more convenient, individualized, and safer treatment of cancer patients.


Assuntos
Neoplasias , Linfócitos T , Humanos , Animais , Camundongos , Microambiente Tumoral , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Imunoterapia/métodos , Modelos Animais de Doenças , Imunoglobulina G/metabolismo , Linhagem Celular Tumoral
5.
Adv Mater ; 35(21): e2210392, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36908046

RESUMO

Glucose-responsive insulin-delivery platforms that are sensitive to dynamic glucose concentration fluctuations and provide both rapid and prolonged insulin release have great potential to control hyperglycemia and avoid hypoglycemia diabetes. Here, biodegradable and charge-switchable phytoglycogen nanoparticles capable of glucose-stimulated insulin release are engineered. The nanoparticles are "nanosugars" bearing glucose-sensitive phenylboronic acid groups and amine moieties that allow effective complexation with insulin (≈95% loading capacity) to form nanocomplexes. A single subcutaneous injection of nanocomplexes shows a rapid and efficient response to a glucose challenge in two distinct diabetic mouse models, resulting in optimal blood glucose levels (below 200 mg dL-1 ) for up to 13 h. The morphology of the nanocomplexes is found to be key to controlling rapid and extended glucose-regulated insulin delivery in vivo. These studies reveal that the injected nanocomplexes enabled efficient insulin release in the mouse, with optimal bioavailability, pharmacokinetics, and safety profiles. These results highlight a promising strategy for the development of a glucose-responsive insulin delivery system based on a natural and biodegradable nanosugar.


Assuntos
Diabetes Mellitus Experimental , Camundongos , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Glucose , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/uso terapêutico , Insulina
6.
Semin Cancer Biol ; 90: 73-100, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36773820

RESUMO

Extracellular vesicles (EVs) function as a mode of intercellular communication and molecular transfer to elicit diverse biological/functional response. Accumulating evidence has highlighted that EVs from immune, tumour, stromal cells and even bacteria and parasites mediate the communication of various immune cell types to dynamically regulate host immune response. EVs have an innate capacity to evade recognition, transport and transfer functional components to target cells, with subsequent removal by the immune system, where the immunological activities of EVs impact immunoregulation including modulation of antigen presentation and cross-dressing, immune activation, immune suppression, and immune surveillance, impacting the tumour immune microenvironment. In this review, we outline the recent progress of EVs in immunorecognition and therapeutic intervention in cancer, including vaccine and targeted drug delivery and summarise their utility towards clinical translation. We highlight the strategies where EVs (natural and engineered) are being employed as a therapeutic approach for immunogenicity, tumoricidal function, and vaccine development, termed immuno-EVs. With seminal studies providing significant progress in the sequential development of engineered EVs as therapeutic anti-tumour platforms, we now require direct assessment to tune and improve the efficacy of resulting immune responses - essential in their translation into the clinic. We believe such a review could strengthen our understanding of the progress in EV immunobiology and facilitate advances in engineering EVs for the development of novel EV-based immunotherapeutics as a platform for cancer treatment.


Assuntos
Vesículas Extracelulares , Neoplasias , Humanos , Vesículas Extracelulares/metabolismo , Neoplasias/patologia , Apresentação de Antígeno , Vigilância Imunológica , Imunoterapia , Microambiente Tumoral
7.
Thromb J ; 21(1): 11, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36703184

RESUMO

Extracorporeal membrane oxygenation (ECMO) can provide life-saving support for critically ill patients suffering severe respiratory and/or cardiac failure. However, thrombosis and bleeding remain common and complex problems to manage. Key causes of thrombosis in ECMO patients include blood contact to pro-thrombotic and non-physiological surfaces, as well as high shearing forces in the pump and membrane oxygenator. On the other hand, adverse effects of anticoagulant, thrombocytopenia, platelet dysfunction, acquired von Willebrand syndrome, and hyperfibrinolysis are all established as causes of bleeding. Finding safe and effective anticoagulants that balance thrombosis and bleeding risk remains challenging. This review highlights commonly used anticoagulants in ECMO, including their mechanism of action, monitoring methods, strengths and limitations. It further elaborates on existing anticoagulant monitoring strategies, indicating their target range, benefits and drawbacks. Finally, it introduces several highly novel approaches to real-time anticoagulation monitoring methods including sound, optical, fluorescent, and electrical measurement as well as their working principles and future directions for research.

8.
Blood Adv ; 7(4): 561-574, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35482909

RESUMO

Thrombolysis with tissue-type plasminogen activator (tPA) remains the main treatment for acute ischemic stroke. Nevertheless, tPA intervention is limited by a short therapeutic window, low recanalization rates, and a risk of intracranial hemorrhage (ICH), highlighting the clinical demand for improved thrombolytic drugs. We examined a novel thrombolytic agent termed "SCE5-scuPA," comprising a single-chain urokinase plasminogen activator (scuPA) fused with a single-chain antibody (SCE5) that targets the activated glycoprotein IIb/IIIa platelet receptor, for its effects in experimental stroke. SCE5-scuPA was first tested in a whole blood clot degradation assay to show the benefit of platelet-targeted thrombolysis. The tail bleeding time, blood clearance, and biodistribution were then determined to inform the use of SCE5-scuPA in mouse models of photothrombotic stroke and middle cerebral artery occlusion against tenecteplase. The impacts of SCE5-scuPA on motor function, ICH, blood-brain barrier (BBB) integrity, and immunosuppression were evaluated. Infarct size was measured by computed tomography imaging and magnetic resonance imaging. SCE5-scuPA enhanced clot degradation ex vivo compared with its nonplatelet-targeting control. The maximal SCE5-scuPA dose that maintained hemostasis and a rapid blood clearance was determined. SCE5-scuPA administration both before and 2 hours after photothrombotic stroke reduced the infarct volume. SCE5-scuPA also improved neurologic deficit, decreased intracerebral blood deposits, preserved the BBB, and alleviated immunosuppression poststroke. In middle cerebral artery occlusion, SCE5-scuPA did not worsen stroke outcomes or cause ICH, and it protected the BBB. Our findings support the ongoing development of platelet-targeted thrombolysis with SCE5-scuPA as a novel emergency treatment for acute ischemic stroke with a promising safety profile.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Trombose , Camundongos , Animais , AVC Isquêmico/complicações , AVC Isquêmico/tratamento farmacológico , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , Distribuição Tecidual , Terapia Trombolítica/efeitos adversos , Fibrinolíticos/uso terapêutico , Acidente Vascular Cerebral/etiologia , Ativador de Plasminogênio Tipo Uroquinase , Trombose/tratamento farmacológico , Complexo Glicoproteico GPIIb-IIIa de Plaquetas
9.
Nat Nanotechnol ; 18(1): 11-22, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36536042

RESUMO

Extensive reports of pulmonary embolisms, ischaemic stroke and myocardial infarctions caused by coronavirus disease 2019 (COVID-19), as well as a significantly increased long-term risk of cardiovascular diseases in COVID-19 survivors, have highlighted severe deficiencies in our understanding of thromboinflammation and the need for new therapeutic options. Due to the complexity of the immunothrombosis pathophysiology, the efficacy of treatment with conventional anti-thrombotic medication is questioned. Thrombolytics do appear efficacious, but are hindered by severe bleeding risks, limiting their use. Nanomedicine can have profound impact in this context, protecting delicate (bio)pharmaceuticals from degradation en route and enabling delivery in a targeted and on demand manner. We provide an overview of the most promising nanocarrier systems and design strategies that may be adapted to develop nanomedicine for COVID-19-induced thromboinflammation, including dual-therapeutic approaches with antiviral and immunosuppressants. Resultant targeted and side-effect-free treatment may aid greatly in the fight against the ongoing COVID-19 pandemic.


Assuntos
Isquemia Encefálica , COVID-19 , Acidente Vascular Cerebral , Trombose , Humanos , COVID-19/complicações , Nanomedicina , Inflamação , Tromboinflamação , Pandemias , Trombose/tratamento farmacológico , Trombose/etiologia
10.
Chemistry ; 29(11): e202202491, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36451579

RESUMO

A highly effective 2-step system for site-specific antibody modification and conjugation of the monoclonal antibody Herceptin (commercially available under Trastuzumab) in a cysteine-independent manner was used to generate labelled antibodies for in vivo imaging. The first step contains redox-activated chemical tagging (ReACT) of thioethers via engineered methionine residues to introduce specific alkyne moieties, thereby offering a novel easy way to fundamentally change the process of antibody bioconjugation. The second step involves modification of the introduced alkyne via azide-alkyne cycloaddition 'click' conjugation. The versatility of this 2-step approach is demonstrated here by the selective incorporation of a fluorescent dye but can also be applied to a wide variety of different conjugation partners depending on the desired application in a facile manner. Methionine-modified antibodies were characterised in vitro, and the diagnostic potential of the most promising variant was further analysed in an in vivo xenograft animal model using a fluorescence imaging modality. This study demonstrates how methionine-mediated antibody conjugation offers an orthogonal and versatile route to the generation of tailored antibody conjugates with in vivo applicability.


Assuntos
Metionina , Neoplasias , Animais , Humanos , Trastuzumab , Anticorpos Monoclonais/química , Racemetionina , Alcinos/química , Azidas/química
11.
Ultrason Sonochem ; 90: 106183, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36201933

RESUMO

Nisin, a peptide used as a natural food preservative, is employed in this work for the development of a novel nanocarrier system. Stable and uniform nisin-shelled nanoemulsions (NSNE) with a diameter of 100 ± 20 nm were successfully prepared using 20 kHz flow-through ultrasonication technique. The NSNE showed limited toxicity, high bactericidal activity and high drug loading capacity (EE 65 % w/w). In addition, the nisin shell was exploited for the site-specific attachment of a recombinantly produced cancer targeting ligand (αHER2LPETG IgG). Employing a unique two phases (bio-click) approach which involved both Sortase A mediated Azide Bioconjugation (SMAB) and Strain Promoted Azide Alkyne Cycloaddition (SPAAC) reactions, targeted NSNE (NSNEDOX-αHER2 IgG) were successfully assembled and loaded with the chemotherapeutic drug Doxorubicin (DOX). Finally, NSNEDOX-αHER2 IgG showed cancer-specific binding and augmented cytotoxicity to HER2 expressing tumour cells.


Assuntos
Neoplasias , Nisina , Humanos , Azidas , Nisina/farmacologia , Doxorrubicina/farmacologia , Imunoglobulina G
12.
Adv Healthc Mater ; 11(21): e2201151, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36037807

RESUMO

The safe administration of thrombolytic agents is a challenge for the treatment of acute thrombosis. Lipid-based nanoparticle drug delivery technologies present opportunities to overcome the existing clinical limitations and deliver thrombolytic therapy with enhanced therapeutic outcomes and safety. Herein, lipid cubosomes are examined as nanocarriers for the encapsulation of thrombolytic drugs. The lipid cubosomes are loaded with the thrombolytic drug urokinase-type plasminogen activator (uPA) and coated with a low-fouling peptide that is incorporated within a metal-phenolic network (MPN). The peptide-containing MPN (pep-MPN) coating inhibits the direct contact of uPA with the surrounding environment, as assessed by an in vitro plasminogen activation assay and an ex vivo whole blood clot degradation assay. The pep-MPN-coated cubosomes prepared with 22 wt% peptide demonstrate a cell membrane-dependent thrombolytic activity, which is attributed to their fusogenic lipid behavior. Moreover, compared with the uncoated lipid cubosomes, the uPA-loaded pep-MPN-coated cubosomes demonstrate significantly reduced nonspecific cell association (<10% of the uncoated cubosomes) in the whole blood assay, a prolonged circulating half-life, and reduced splenic uPA accumulation in mice. These studies confirm the preserved bioactivity and cell membrane-dependent release of uPA within pep-MPN-coated lipid cubosomes, highlighting their potential as a delivery vehicle for thrombolytic drugs.


Assuntos
Fibrinolíticos , Trombose , Camundongos , Animais , Portadores de Fármacos , Polifenóis , Ativador de Plasminogênio Tipo Uroquinase/farmacologia , Ativador de Plasminogênio Tipo Uroquinase/uso terapêutico , Lipídeos , Peptídeos/uso terapêutico
13.
Artigo em Inglês | MEDLINE | ID: mdl-35873220

RESUMO

Background: The fibrinolytic system plays a critical role in maintaining hemostasis. Central to fibrinolysis is the degradation of fibrin by plasmin, produced in the circulation following the activation of plasminogen by plasminogen activators (PAs). Accurately measuring the plasminogen activation rate is vital for the understanding of fibrinolytic processes, particularly in the context of thrombolysis. Yet, due to the insoluble nature of fibrin, in vitro and ex vivo investigations of PA-mediated plasminogen activation have proven challenging. As researchers frequently adopt soluble fibrinogen fragments and/or alter the experimental system beyond what is physiologically relevant, they limit the validation and interpretation of their findings. Here, we present a novel, high-throughput assay for measuring plasminogen activation rates on natural, plasma-derived fibrin that optimally simulates in vivo conditions. Method: Human plasma was used as the source of plasmin(ogen) and fibrin(ogen). "Halo-shaped" plasma clots were produced in a 96-well plate using a thrombin-containing clotting mixture, ensuring that an optically compatible and plasma-free center is maintained in each well. Subsequent additions of a plasmin chromogenic substrate and different PAs were followed by absorbance measurements over time to extract the corresponding enzyme kinetics information. Results and Discussion: Validation experiments demonstrated the capability of our approach to accurately model fibrin-dependent and -independent plasminogen activation as well as sensitively detect variations in plasminogen and fibrinogen plasma levels. Conclusion: This assay allows a straightforward, yet powerful, measurement of plasminogen activation rates on established plasma clots, with the capability of properly assessing fibrin- and non-fibrin-dependent plasminogen activation by various therapeutic PAs.

14.
Int J Mol Sci ; 23(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35805892

RESUMO

Positron emission tomography is the imaging modality of choice when it comes to the high sensitivity detection of key markers of thrombosis and inflammation, such as activated platelets. We, previously, generated a fluorine-18 labelled single-chain antibody (scFv) against ligand-induced binding sites (LIBS) on activated platelets, binding it to the highly abundant platelet glycoprotein integrin receptor IIb/IIIa. We used a non-site-specific bio conjugation approach with N-succinimidyl-4-[18F]fluorobenzoate (S[18F]FB), leading to a mixture of products with reduced antigen binding. In the present study, we have developed and characterised a novel fluorine-18 PET radiotracer, based on this antibody, using site-specific bio conjugation to engineer cysteine residues with N-[2-(4-[18F]fluorobenzamido)ethyl]maleimide ([18F]FBEM). ScFvanti-LIBS and control antibody mut-scFv, with engineered C-terminal cysteine, were reduced, and then, they reacted with N-[2-(4-[18F]fluorobenzamido)ethyl]maleimide ([18F]FBEM). Radiolabelled scFv was injected into mice with FeCl3-induced thrombus in the left carotid artery. Clots were imaged in a PET MR imaging system, and the amount of radioactivity in major organs was measured using an ionisation chamber and image analysis. Assessment of vessel injury, as well as the biodistribution of the radiolabelled scFv, was studied. In the in vivo experiments, we found uptake of the targeted tracer in the injured vessel, compared with the non-injured vessel, as well as a high uptake of both tracers in the kidney, lung, and muscle. As expected, both tracers cleared rapidly via the kidney. Surprisingly, a large quantity of both tracers was taken up by organs with a high glutathione content, such as the muscle and lung, due to the instability of the maleimide cysteine bond in vivo, which warrants further investigations. This limits the ability of the novel antibody radiotracer 18F-scFvanti-LIBS to bind to the target in vivo and, therefore, as a useful agent for the sensitive detection of activated platelets. We describe the first fluorine-18 variant of the scFvanti-LIBS against activated platelets using site-specific bio conjugation.


Assuntos
Cisteína , Trombose , Animais , Anticorpos/metabolismo , Plaquetas/metabolismo , Cisteína/metabolismo , Maleimidas/metabolismo , Camundongos , Tomografia por Emissão de Pósitrons/métodos , Trombose/metabolismo , Distribuição Tecidual
15.
Sci Rep ; 12(1): 5702, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35383230

RESUMO

The identification of the fibrotic arrhythmogenic substrate as a means of improving the diagnosis and prediction of atrial fibrillation has been a focus of research for many years. The relationship between the degree of atrial fibrosis as a major component of atrial cardiomyopathy and the recurrence of arrhythmia after AF ablation can correlate. While the focus in identification and characterisation of this substrate has been centred on the atrial wall and the evaluation of atrial scar and extracellular matrix (ECM) expansion by late gadolinium-enhancement (LGE) on cardiac magnetic resonance imaging (CMRI), LGE cannot visualise diffuse fibrosis and diffuse extravasation of gadolinium. The atrial pericardium is a fine avascular fibrous membranous sac that encloses the atrial wall, which can undergo remodelling leading to atrial disease and AF. Nevertheless, little attention has been given to the detection of its fibrocalcification, impact on arrhythmogenesis and, most importantly, on the potential prothrombotic role of epi-pericardial remodelling in generation of emboli. We have recently reported that tracers against collagen I and IV can provide a direct assessment of the ECM, and thus can estimate fibrotic burden with high sensitivity. Here, we show the ability of these optical tracers to identify epi-pericardial fibrosis, as well as to demonstrate subtle interstitial fibrosis of the atrial wall in a mouse model of beta-2-adrenergic receptor (ß2-AR) cardiac overexpression.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Animais , Fibrilação Atrial/diagnóstico por imagem , Fibrilação Atrial/patologia , Ablação por Cateter/métodos , Colágeno , Meios de Contraste , Fibrose , Gadolínio , Átrios do Coração , Imageamento por Ressonância Magnética/métodos , Camundongos , Pericárdio/patologia
16.
ACS Appl Mater Interfaces ; 14(3): 3740-3751, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35019268

RESUMO

Thrombolytic (clot-busting) therapies with plasminogen activators (PAs) are first-line treatments against acute thrombosis and ischemic stroke. However, limitations such as narrow therapeutic windows, low success rates, and bleeding complications hinder their clinical use. Drug-loaded polyphenol-based nanoparticles (NPs) could address these shortfalls by delivering a more targeted and safer thrombolysis, coupled with advantages such as improved biocompatibility and higher stability in vivo. Herein, a template-mediated polyphenol-based supramolecular assembly strategy is used to prepare nanocarriers of thrombolytic drugs. A thrombin-dependent drug release mechanism is integrated using tannic acid (TA) to cross-link urokinase-type PA (uPA) and a thrombin-cleavable peptide on a sacrificial mesoporous silica template via noncovalent interactions. Following drug loading and template removal, the resulting NPs retain active uPA and demonstrate enhanced plasminogen activation in the presence of thrombin (1.14-fold; p < 0.05). Additionally, they display lower association with macrophage (RAW 264.7) and monocytic (THP-1) cell lines (43 and 7% reduction, respectively), reduced hepatic accumulation, and delayed blood clearance in vivo (90% clearance at 60 min vs 5 min) compared with the template-containing NPs. Our thrombin-responsive, polyphenol-based NPs represent a promising platform for advanced drug delivery applications, with potential to improve thrombolytic therapies.


Assuntos
Materiais Biocompatíveis/química , Fibrinolíticos/farmacologia , Polifenóis/química , Terapia Trombolítica , Trombose/tratamento farmacológico , Ativador de Plasminogênio Tecidual/farmacologia , Animais , Linhagem Celular , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Fibrinolíticos/química , Humanos , Teste de Materiais , Camundongos , Nanopartículas/química , Temperatura , Ativador de Plasminogênio Tecidual/química
17.
EBioMedicine ; 75: 103786, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34963098

Assuntos
Hemodinâmica , Humanos
18.
Blood ; 139(4): 597-607, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34752601

RESUMO

Thrombotic microangiopathies are hallmarked by attacks of disseminated microvascular thrombosis. In thrombotic thrombocytopenic purpura (TTP), this is caused by a rise in thrombogenic ultra-large von Willebrand factor (VWF) multimers because of ADAMTS13 deficiency. We previously reported that systemic plasminogen activation is therapeutic in a TTP mouse model. In contrast to its natural activators (ie, tissue plasminogen activator and urokinase plasminogen activator [uPA]), plasminogen can directly bind to VWF. For optimal efficacy and safety, we aimed to focus and accelerate plasminogen activation at sites of microvascular occlusion. We here describe the development and characterization of Microlyse, a fusion protein consisting of a high-affinity VHH targeting the CT/CK domain of VWF and the protease domain of uPA, for localized plasminogen activation on microthrombi. Microlyse triggers targeted destruction of platelet-VWF complexes by plasmin on activated endothelial cells and in agglutination studies. At equal molar concentrations, Microlyse degrades microthrombi sevenfold more rapidly than blockade of platelet-VWF interactions with a bivalent humanized VHH (caplacizumab*). Finally, Microlyse attenuates thrombocytopenia and tissue damage (reflected by increased plasma lactate dehydrogenase activity, as well as PAI-1 and fibrinogen levels) more efficiently than caplacizumab* in an ADAMTS13-/- mouse model of TTP, without affecting hemostasis in a tail-clip bleeding model. These findings show that targeted thrombolysis of VWF by Microlyse is an effective strategy for the treatment of TTP and might hold value for other forms of VWF-driven thrombotic disease.


Assuntos
Fibrinolíticos/uso terapêutico , Microangiopatias Trombóticas/tratamento farmacológico , Fator de von Willebrand/metabolismo , Animais , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Púrpura Trombocitopênica Trombótica/tratamento farmacológico , Púrpura Trombocitopênica Trombótica/metabolismo , Proteínas Recombinantes de Fusão/uso terapêutico , Microangiopatias Trombóticas/metabolismo
19.
Adv Mater ; 34(21): e2106607, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34866253

RESUMO

Antibody (Ab)-targeted nanoparticles are becoming increasingly important for precision medicine. By controlling the Ab orientation, targeting properties can be enhanced; however, to afford such an ordered configuration, cumbersome chemical functionalization protocols are usually required. This aspect limits the progress of Abs-nanoparticles toward nanomedicine translation. Herein, a novel one-step synthesis of oriented monoclonal Ab-decorated metal-organic framework (MOF) nanocrystals is presented. The crystallization of a zinc-based MOF, Zn2 (mIM)2 (CO3 ), from a solution of Zn2+ and 2-methylimidazole (mIM), is triggered by the fragment crystallizable (Fc) region of the Ab. This selective growth yields biocomposites with oriented Abs on the MOF nanocrystals (MOF*Ab): the Fc regions are partially inserted within the MOF surface and the antibody-binding regions protrude from the MOF surface toward the target. This ordered configuration imparts antibody-antigen recognition properties to the biocomposite and shows preserved target binding when compared to the parental antibodies. Next, the biosensing performance of the system is tested by loading MOF*Ab with luminescent quantum dots (QD). The targeting efficiency of the QD-containing MOF*Ab is again, fully preserved. The present work represents a simple self-assembly approach for the fabrication of antibody-decorated MOF nanocrystals with broad potential for sensing, diagnostic imaging, and targeted drug delivery.


Assuntos
Estruturas Metalorgânicas , Nanopartículas , Pontos Quânticos , Anticorpos , Luminescência , Estruturas Metalorgânicas/química , Pontos Quânticos/química
20.
Trends Cardiovasc Med ; 32(1): 20-31, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33338638

RESUMO

Atrial fibrillation (AF) is a common arrhythmia that can lead to stroke. The diseased muscle tissue of the atria develops atrial fibrosis, inflammation, thrombosis and subsequent strokes, resulting in significant morbidity and mortality. Current diagnostic and evaluation paradigms for clinical AF focus on identifying functional and morphological abnormalities of the left atria by echocardiography. Notably, the development of atrial substrate that marks AF likely occurs for years before the manifestation of AF onset, meaning that the functional and morphometrical aberrations are end-stage features, representing a stable state of an already-compromised tissue. There is no existing 'gold standard' measure to identify the early atrial muscle disease and characterization of the atrial substrate is inadequate. In fact, sub-clinical identification of atrial myopathy is not undertaken in clinical practice because there is no robust screening method. Development of molecular imaging probes for detection of atrial muscle disease might enable early detection and staging of AF, ultimately leading to improved treatment outcome. In this review, we discuss possible molecular imaging targets that may enable early diagnosis of cardiovascular disease, with focus on novel insights, challenges and opportunities for sub-clinical imaging of atrial myopathy and AF.


Assuntos
Fibrilação Atrial , Doenças Musculares , Fibrilação Atrial/diagnóstico por imagem , Fibrilação Atrial/terapia , Gerenciamento Clínico , Diagnóstico Precoce , Átrios do Coração/diagnóstico por imagem , Humanos , Imagem Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...